core bit - meaning and definition. What is core bit
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is core bit - definition

DRILL SPECIFICALLY DESIGNED TO REMOVE A CYLINDER OF MATERIAL
Core bit; Core bits; Drill core; Diamond core drill; Core Drill; Core drilling
  • An oriented core [[goniometer]], commonly used when analyzing cores for contacts and other structural features

main store         
  • Diagram of a 4×4 plane of magnetic core memory in an X/Y line coincident-current setup. X and Y are drive lines, S is sense, Z is inhibit. Arrows indicate the direction of current for writing.
  • A 10.8×10.8 cm plane of magnetic core memory with 64 x 64 bits (4 Kb), as used in a [[CDC 6600]]. Inset shows ''word line'' architecture with two wires per bit
  • Close-up of a core plane. The distance between the rings is roughly 1 mm (0.04 in). The green horizontal wires are X; the Y wires are dull brown and vertical, toward the back. The sense wires are diagonal, colored orange, and the inhibit wires are vertical twisted pairs.
  • One of three inter-connected modules that make up an Omnibus-based PDP-8 core memory plane.  This is the middle of the three and contains the array of actual ferrite cores.
  • One of three inter-connected modules that make up an Omnibus-based (PDP 8/e/f/m) PDP-8 core memory plane.
  • One of three inter-connected modules that make up an Omnibus-based PDP-8 core memory plane.
  • [[Project Whirlwind]] core memory
  • Diagram of the [[hysteresis]] curve for a magnetic memory core during a read operation. Sense line current pulse is high ("1") or low ("0") depending on original magnetization state of the core.
PREDOMINANT FORM OF RANDOM-ACCESS COMPUTER MEMORY FOR 20 YEARS BETWEEN ABOUT 1955 AND 1975
Ferrite core memory; Ferrite-core memory; Core store; Magnetic-Core Storage; Ferrite ram; Magnetic core storage; Core Memory; Main store; Magnetic core memory; Core memory; Core memories
Bit (horse)         
  • Horse skull showing the large gap between the front teeth and the back teeth. The bit sits in this gap, and extends beyond from side to side.
TYPE OF HORSE TACK
Horse bit; Horse bits; Champing at the bit; Chomping at the bit; Horse's bit; Horsebit
The bit is an item of a horse's tack. It usually refers to the assembly of components that contacts and controls the horse's mouth, and includes the shanks, rings, cheekpads and mullen, all described here below, but it also sometimes simply refers to the mullen, the piece that fits inside the horse's mouth.
ferrite core memory         
  • Diagram of a 4×4 plane of magnetic core memory in an X/Y line coincident-current setup. X and Y are drive lines, S is sense, Z is inhibit. Arrows indicate the direction of current for writing.
  • A 10.8×10.8 cm plane of magnetic core memory with 64 x 64 bits (4 Kb), as used in a [[CDC 6600]]. Inset shows ''word line'' architecture with two wires per bit
  • Close-up of a core plane. The distance between the rings is roughly 1 mm (0.04 in). The green horizontal wires are X; the Y wires are dull brown and vertical, toward the back. The sense wires are diagonal, colored orange, and the inhibit wires are vertical twisted pairs.
  • One of three inter-connected modules that make up an Omnibus-based PDP-8 core memory plane.  This is the middle of the three and contains the array of actual ferrite cores.
  • One of three inter-connected modules that make up an Omnibus-based (PDP 8/e/f/m) PDP-8 core memory plane.
  • One of three inter-connected modules that make up an Omnibus-based PDP-8 core memory plane.
  • [[Project Whirlwind]] core memory
  • Diagram of the [[hysteresis]] curve for a magnetic memory core during a read operation. Sense line current pulse is high ("1") or low ("0") depending on original magnetization state of the core.
PREDOMINANT FORM OF RANDOM-ACCESS COMPUTER MEMORY FOR 20 YEARS BETWEEN ABOUT 1955 AND 1975
Ferrite core memory; Ferrite-core memory; Core store; Magnetic-Core Storage; Ferrite ram; Magnetic core storage; Core Memory; Main store; Magnetic core memory; Core memory; Core memories
<storage> (Or "core") An early form of non-volatile storage built (by hand) from tiny rings of magnetisable material threaded onto very fine wire to form large (e.g. 13"x13" or more) rectangluar arrays. Each core stored one bit of data. These were sandwiched between printed circuit boards(?). Sets of wires ran horizontally and vertically and where a vertical and horizontal wire crossed, a core had both wires threaded through it. A single core could be selected and magnetised by passing sufficient current through its horizontal and vertical wires. A core would retain its magnetisation until it was re-magnetised. The two possible polarities of magnetisation were used to represent the binary values zero and one. A third "sense" wire, passed through the core and, if the magnetisation of the core was changed, a small pulse would be induced in the sense wire which could be detected and used to deduce the core's original state. Some core memory was immersed in a bath of heated oil to improve its performance. Core memory was rendered obsolete by semiconductor memory. For example, the 1970s-era NCR 499 had two boards, each with 16 kilobytes of core memory. (1996-03-04)

Wikipedia

Core drill

A modern core drill is a drill specifically designed to remove a cylinder of material, much like a hole saw. The material left inside the drill bit is referred to as the core.

Core drills used in metal are called annular cutters. Core drills used for concrete and hard rock generally use industrial diamond grit as the abrasive material and may be electrical, pneumatic or hydraulic powered. Core drills are commonly water cooled, and the water also carries away the fine waste as a slurry. For drilling masonry, carbide core drills can be used, but diamond is more successful when cutting through rebar.

The earliest core drills were those used by the ancient Egyptians, invented in 3000 BC. Core drills are used for many applications, either where the core needs to be preserved (the drilling apparatus used in obtaining a core sample is often referred to as a corer), or where drilling can be done more rapidly since much less material needs to be removed than with a standard bit. This is the reason that diamond-tipped core drills are commonly used in construction to create holes for pipes, manholes, and other large-diameter penetrations in concrete or stone.

Core drills are used frequently in mineral exploration where the coring may be several hundred to several thousand feet in length. The core samples are recovered and examined by geologists for mineral percentages and stratigraphic contact points. This gives exploration companies the information necessary to begin or abandon mining operations in a particular area.

Before the start of World War Two, Branner Newsom, a California mining engineer, invented a core drill that could take out large diameter cores up to 16 feet in length for mining shafts. This type of core drill is no longer in use as modern drill technology allows standard drilling to accomplish the same at a much cheaper cost.

Core drills come with several power choices including electric, pneumatic, and hydraulic (all of which require power sources, such as a generator).